One-and-a-half-centered expansion method in charge-transfer calculations of proton-hydrogen scattering.

نویسندگان

  • Chen
  • Reading
چکیده

In this paper, we undertake a feasibility study of improving the one-and-a-half-centered expansion (OHCE) method of Reading, Ford, and Becker [J.Phys. B 14, 1995 (1981);15, 3257 (1982)]. We have explored the efficacy of an alternative method to evaluate the charge-transfer matrix elements and improved the estimated time dependence of the charge-transfer scattering amplitudes. More projectile states have been included in the calculations than used hitherto. A unitary matrix, U matrix, which can propagate the wave functions from —(xJ to t, where t denotes time, has been constructed using the single-centered expansion (SCE) method. A complex basis set of nine radial s states and nine radial p states has been used in the expansion of trial wave functions for the target. Charge-transfer matrix elements have been evaluated by a Feynman integral technique; one numerical integral using Gaussian quadrature is needed. The radial parts of the matrix elements are stored on circles and used for all the impact parameters. In a OHCE calculation, we have to choose a function P (z) to modulate the charge-transfer amplitudes. The only constraints on P (z) are P ( —ao)=0 and P (~)=1. In this paper, P (z) has been obtained from a SCE calculation. This P (z) function increases gradually in the whole collision region. It offers an improvement over the step function used in previous work. A computer code has been developed to include s and p states for the target and projectile. The calculations have been performed in the proton energy range from 30 to 250 keV. The charge transfer to the 1s state has been calculated and gives good agreement with the experimental data. The proton energy ranges have been extended from the 100 keV used in previous work to 250 keV. The charge-transfer cross sections to the 2p state fit the experimental data at 30 keV and are almost the same as those calculated using the four-state, two-centered expansion method proposed by Cheshire and Gallaher [J. Phys. B 3, 813 (1970)] and Shakeshaft [Phys. Rev. A 14, 1626 (1976)]. The results of the charge exchange to the 2s state are also in fairly good agreement with the measurements of Ryding [listed in Tawara, Kato, and Nakar, At. Data Nucl. Data Tables 32, 235 (1985)].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

روش جفت‌شدگی نزدیک دومرکزی در فرآیند انتقال بار

In the present work, the transition matrix elements as well as differential and total scattering cross-sections for positronium formation in Positron-Hydrogen atom collision and hydrogen formation in Positronium-Hydrogen ion collision, through the charge transfer channel by Two-Centre Close-Coupling method up to a first order approximation have been calculated. The charge transfer collision is ...

متن کامل

محاسبه سطح مقطع جزیی انتقال حالت به حالت بار به روش فادیف

  A second-order approximation to the Faddeev-Watson-Lovelace treatment of the rearrangement channel is used in a three-body scattering cross sections. In this formalism, the Three-body wave function is expressed by three coupled integral equations, the Faddeev equations, which contian the two-body (off-shell) transition amplitudes, and proved the uniqueness of their solutions. This amplitude c...

متن کامل

به کاربردن تقریب دو حالته در تولید هیدروژن با فرود آمدن پروتون بر روی پوزیترونیوم

Although there is no experimental data available for antihydrogen formation following antiprotons impact on positroium atoms, as a charge transfer reaction, at incident energies which are suitable for antimatter high-precision spectroscopic studies, measurements were carried out for its charge-conjugate reaction i. e. hydrogen formation, by protons impact on positronium. In this study, a two-st...

متن کامل

Theoretical investigations on molecular structure, NBO, HOMO-LUMO and MEP analysis of two crystal structures of N-(2-benzoyl-phenyl) oxalyl: A DFT study

The N-(2-benzoyl-phenyl) oxalyl derivatives are important models for studying of three-centered intramolecular hydrogen bonding in organic molecules. The quantum theoretical calculations for two crystal structures of N-(2-benzoyl-phenyl) oxalyl (compounds I and II) were performed by Density Functional Theory (B3LYP method and 6-311+G* basis set). From the optimized structures, geometric paramet...

متن کامل

بررسی تشکیل اتم پوزیترونیوم از یون مولکول هیدروژن توسط فرمول‌بندی برخوردهای چند‌گانه در کانال انتقال بار

In the present work the first and second order scattering amplitudes and the related phase were calculated in the charge transfer channel. The positronium formation, with the impact of molecular hydrogen ion, has been carried out using multiple channel scattering formulation and transition matrix. The calculation of differential cross section has been done by varying the scattering angle from 0...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. A, Atomic, molecular, and optical physics

دوره 48 1  شماره 

صفحات  -

تاریخ انتشار 1993